金沙检测线路js69微信号
|
工作履历
2019.10- 常州大学,金沙检测线路js69
2017.11-2019.01 美国阿克伦大学,化学与生物分子工程系
教学
环境工程原理,环境化学,基础化学,大气污染控制进展,石油石化水污染控制进展
研究领域
环境功能材料的开发及其在催化氧化、等离子体催化氧化/转化VOCs和emerging contaminants中的应用
奖励与荣誉
2023年江苏省研究生科研与实践创新计划
2022年度大学生创新创业基金重点项目
2019年江苏省能源研究会能源科学技术进步奖一等奖
学术成果
一、发表论文
[1] Construction of Pt-MnO2 interface with strong electron coupling effect for plasma catalytic oxidation of aromatic VOCs. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023, 665, 131248.
[2] Nano-Au supported on CeO2 for plasma catalytic degradation of n-undecane: Enhancement of activity and stability. Separation and Purification Technology. 2023, 313, 123497.
[3] Revealing the role of oxygen vacancies on α-MnO2 of different morphologies in CO oxidation using operando DRIFTS-MS. Applied Surface Science. 2023, 618, 156643.
[4] Lattice Compressive Strain of Co3O4 Induced by Synthetic Solvents Promotes Efficient Oxidation of Benzene at Low Temperature. ACS Appl. Mater. Interfaces 2023, 15, 4, 5229–5241.
[5] Boosting the plasma catalytic performance of CeO2/γ-Al2O3 in long-chain alkane VOCs via tuning the crystallite size. Applied Surface Science. 2023, 611A, 155742.
[6] Multiple interfaces from nano-sized Pt on bimetal oxides of CeO2 and MnO2 promote complete degradation of o-xylene in a room-temperature operated plasma-catalytic reactor. Applied Catalysis A: General. 2022, 647, 118913.
[7] Revealing the significant differences of CO plasma oxidation on β-MnO2 catalyst in in- and post-plasma catalysis configurations using operando DRIFTS-MS. Molecular Catalysis. 2022, 531, 112681.
[8] Engineering Pt@MnOx/γ-Al2O3 catalyst with enhanced Pt-MnOx interface to boost plasma catalytic oxidation of o-xylene, Journal of Environmental Chemical Engineering, 2022, 10, 107493.
[9] High ratio of Ce3+/(Ce3++Ce4+) enhanced the plasma catalytic degradation of n-undecane on CeO2/γ-Al2O3. Journal of Hazardous Materials. 2022, 424D, 127700.
[10] Enhanced energy efficiency and reduced nanoparticle emission on plasma catalytic oxidation of toluene using Au/γ-Al2O3 nanocatalyst. Chemical Engineering Journal. 2022, 427, 130983.
[11] Incorporation of linear poly(ionic liquid)s inside acid-base dualistic carbons for CO2 cycloaddition reaction. Journal of CO2 Utilization. 2021, 52, 101702.
[12] Evaluation of Au/γ-Al2O3 nanocatalyst for plasma-catalytic decomposition of toluene. Chemosphere. 2021, 285, 131474.
[13] Enhanced removal of ultrafine particles from kerosene combustion using a dielectric barrier discharge reactor packed with porous alumina balls. Plasma Sci. Technol. 2021, 23, 075505.
[14] Effect of supports on plasma catalytic decomposition of toluene using in situ plasma DRIFTS. Journal of Hazardous Materials. 2021, 405, 124203.
[15] Mechanism on the plasma-catalytic oxidation of graphitic carbon over Au/γ-Al2O3 by in situ plasma DRIFTS-mass spectrometer. Journal of Hazardous Materials. 2020, 396, 122730.
[16] NOx production in plasma reactors by pulsed spark discharges. J. Phys. D: Appl. Phys. 2020, 53, 385201.
[17] Efficient CO2 enrichment and fixation by engineering micropores of multifunctional hypercrosslinked ionic polymers. Chemical Engineering Journal. 2020, 390, 124652.
[18] Cobalt–salen-based porous ionic polymer: The role of valence on cooperative conversion of CO2 to cyclic carbonate. ACS Applied Materials & Interfaces. 2020, 12, 1, 609-618.
[19] Porous metallosalen hypercrosslinked ionic polymers for cooperative CO2 cycloaddition conversion. Industrial & Engineering Chemistry Research. 2020, 59, 2, 676-684.
[20] On the ionic liquid films ‘pinned’ by core–shell structured Fe3O4@carbon nanoparticles and their tribological properties. Phys. Chem. Chem. Phys. 2019, 21, 26387-26398.
[21] Engineering molecular interaction in polymeric hybrids: Effect of thermal linker and polymer chain structure on thermal conduction. Composites Part B: Engineering. 2019, 166, 509-515.
[22] Direct aerobic oxidative homocoupling of benzene to biphenyl over functional porous organic polymer supported atomically dispersed palladium catalyst. Applied Catalysis B: Environmental. 2017, 209, 679-688.
[23] Imidazolinium based porous hypercrosslinked ionic polymers for efficient CO2 capture and fixation with epoxides. Green Chemistry. 2017, 19, 2675-2686.
[24] Pyrazinium polyoxometalate tetrakaidecahedron-like crystals esterify oleic acid with equimolar methanol at room temperature. Journal of Catalysis. 2016, 339, 123-134.
[25] Hypercrosslinked organic polymer based carbonaceous catalytic materials: sulfonic acid functionality and nano-confinement effect. Applied Catalysis B: Environmental. 2015, 176-177, 718-730.
[26] Heteropolyanion-based ionic liquid-functionalized mesoporous copolymer catalyst for Friedel-Crafts benzylation of arenes with benzyl alcohol. Chemical Engineering Journal. 2014, 254, 54-62.
一种等离子体氧化合成有机含氧化合物的装置和方法,公开号CN113694854B.
一种低温等离子体耦合疏水性催化剂一步转化苯和CO2制苯酚的方法,申请号202211252773X.
一种金属蜂窝型等离子体放电反应器, 申请号202010517232X.
一种蜂窝型等离子体放电反应器, 申请号2020105172315.
一种高温离子检测装置及组成的检测系统和使用方法, 申请号2020104632434.
一种催化反应装置及催化剂带电研究用仪器和使用方法, 申请号2020104621321.
一种兼作雾化器的微小气泡发生器及其使用方法, 申请号2020104589504.
高通量、高截留率的疏水改性蒸馏膜材料及其应用, 公开号CN102228801A.
研究项目
高湿度条件下抗水型锰基催化剂协同等离子体低温降解苯系物VOCs的研究,常州市科技项目应用基础研究计划,2022.04-2024.05。
等离子体催化氧化VOCs的表面氧化及带电影响机理研究,国家自然科学基金面上基金,2021.01-2024.12。
介质阻挡放电协同催化降解VOCs高效催化剂的研究,常州大学科研项目,2020.01-2021.12。
基于全装修装配式混凝土建筑的室内甲醛控制技术研究,浙江省装配式混凝土工业化建筑工程技术研究中心开放基金,2019.10-2021.9。
面向温和条件下二氧化碳转化为含氧化合物设计合成功能化多孔超交联离子聚合物高效催化剂,国家自然科学基金石油化工联合基金,2017.1-2019.12。
多孔超交联离子聚合物高效催化常压CO2环加成制环状碳酸酯,江苏省自然科学基金青年科学基金项目,2016.7-2019.6。
多孔超交联离子框架高效催化二氧化碳合成环状碳酸酯,中国博士后科学基金面上资助(一等),2016.7-2017.6。